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Abstract
Automated management of physical resources is critical for reducing 
the operational costs of virtualized environments. An effective 
resource-management solution must provide performance isolation 
among virtual machines (VMs), handle resource fragmentation 
across physical hosts and optimize scheduling for multiple resources.  
It must also utilize the underlying hardware infrastructure efficiently. 
In this paper, we present the design and implementation of two such 
management solutions: DRS and DPM. We also highlight some key 
lessons learned from production customer deployments over a period 
of more than five years.

VMware’s Distributed Resource Scheduler (DRS) manages the 
allocation of physical resources to a set of virtual machines deployed 
in a cluster of hosts, each running the VMware ESX hypervisor. DRS 
maps VMs to hosts and performs intelligent load balancing in order 
to improve performance and to enforce both user-specified policies and 
system-level constraints. Using a variety of experiments, augmented 
with simulation results, we show that DRS significantly improves 
the overall performance of VMs running in a cluster. DRS also 
supports a “what-if” mode, making it possible to evaluate the impact 
of changes in workloads or cluster configuration.

VMware’s Distributed Power Management (DPM) extends DRS with 
the ability to reduce power consumption by consolidating VMs onto 
fewer hosts. DPM recommends evacuating and powering off hosts 
when CPU and memory resources are lightly utilized. It recommends 
powering on hosts appropriately as demand increases, or as required 
to satisfy resource-management policies and constraints. Our extensive 
evaluation shows that in clusters with non-trivial periods of lowered 
demand, DPM reduces server power consumption significantly.
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1 Introduction
Initially, the rapid adoption of virtualization was fueled by significant 
cost savings resulting from server consolidation. Running several 
virtual machines (VMs) on a single physical host improved hardware 
utilization, allowing administrators to “do more with less” and reduce 
capital expenses. Later, more advanced VM capabilities such as cloning, 
template-based deployment, checkpointing, and live migration [43] 
of running VMs led to more agile IT infrastructures. As a result, it 
became much easier to create and manage virtual machines.

The ease of deploying workloads in VMs is leading to increasingly 
large VM installations. Moreover, hardware technology trends continue 
to produce more powerful servers with higher core counts and 
increased memory density, causing consolidation ratios to rise. 
However, the operational expense of managing VMs now represents a 
significant fraction of overall costs for datacenters using virtualization. 
Ideally, the complexity of managing a virtualized environment should 
also benefit from consolidation, scaling with the number of hosts, 
rather than the number of VMs. Otherwise, managing a virtual 
infrastructure would be as hard — or arguably harder, due to 
sharing and contention — as managing a physical environment, 
where each application runs on its own dedicated hardware.

In practice, we observed that a large fraction of the operational costs 
in a virtualized environment were related to the inherent complexity 
of determining good VM-to-host mappings, and deciding when to 
use vMotion [8], VMware’s live migration technology, to rebalance 
load by changing those mappings. The difficulty of this problem is 
exacerbated by the fragmentation of resources across many physical 
hosts and the need to balance the utilization of multiple resources 
(including CPU and memory) simultaneously.
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2. Resource Model
In this section, we discuss the DRS resource model and its associated 
resource controls. A resource model explains the capabilities and 
goals of a resource-management solution. DRS offers a powerful 
resource model and provides a flexible set of resource controls. A 
wide range of resource-management policies can be specified by 
using these controls to provide differentiated QoS to groups of VMs.

2.1 Basic Resource Controls
VMware’s resource controls allow administrators and users to express 
allocations in terms of either absolute VM allocation or relative VM 
importance. Control knobs for processor and memory allocations are 
provided at the individual host level by the VMware ESX hypervisor. 
DRS provides exactly the same controls for a distributed cluster 
consisting of multiple ESX hosts, allowing them to be managed  
as a single entity. The basic VMware resource controls are:

• Reservation: A reservation species a minimum guaranteed amount 
of a certain resource, i.e., a lower bound that applies even when 
this resource is over-committed heavily. Reservations are expressed 
in absolute units, such as megahertz (MHz) for CPU, and megabytes 
(MB) for memory. Admission control during VMpower-on ensures 
that the sum of the reservations for a resource does not exceed 
its total capacity.

• Limit: A limit species an upper bound on the consumption of a 
certain resource, even when this resource is under-committed.  
A VM is prevented from consuming more than its limit, even if 
that leaves some resources idle. Like reservations, limits are 
expressed in concrete absolute units, such as MHz and MB.

• Shares: Shares specify relative importance, and are expressed 
using abstract numeric values. A VM is entitled to consume 
resources proportional to its share allocation; it is guaranteed  
a minimum resource fraction equal to its fraction of the total 
shares when there is contention for a resource. In the literature,  
this control is sometimes referred to as a weight.

The ability to express hard bounds on allocations using reservations 
and limits is extremely important in a virtualized environment. Without 
such guarantees, it is easy for VMs to suer from unacceptable or 
unpredictable performance. Meeting performance objectives would 
require resorting to crude methods such as static partitioning or 
over-provisioning of physical hardware, negating the advantages 
of server consolidation. This motivated the original implementation 
of reservations and limits in ESX, as well as their inclusion in DRS.

Although DRS focuses primarily on CPU and memory resources, 
similar controls for I/O resources have been validated by a research 
prototype [30]. VMware also offers shares and limit controls for network 
and storage bandwidth [10, 28]. A new Storage DRS feature was 
introduced in vSphere 5.0, providing a subset of DRS functionality  
for virtual disk placement and load-balancing across storage 
devices [16, 29, 31].

We also found that administrators needed a reliable way to specify 
resource-management policies. In consolidated environments, 
aggregate demand can often exceed the supply of physical resources. 
Administrators need expressive resource controls to prioritize VMs 
of varying importance, in order to isolate and control the performance 
of diverse workloads competing for the same physical hardware.

We designed DRS (for distributed resource scheduler), to help reduce 
the operational complexity of running a virtualized datacenter. DRS 
enables managing a cluster containing many potentially-heterogeneous 
hosts as if it were a single pool of resources. In particular, DRS provides 
several key capabilities:

• A cluster abstraction for managing a collection of hosts as a 
single aggregate entity, with the combined processing and 
memory resources of its constituent hosts.

• A powerful resource pool abstraction, which supports hierarchical 
resource management among both VMs and groups of VMs. At 
each level in the hierarchy, DRS provides a rich set of controls for 
flexibly expressing policies that manage resource contention.

• Automatic initial placement, assigning a VM to a specific host 
within the cluster when it is powered on.

• Dynamic load balancing of both CPU and memory resources across 
hosts in response to dynamic fluctuations in VM demands, as well 
as changes to the physical infrastructure.

• Custom rules to constrain VM placement, including affinity and 
anti-affinity rules both among VMs and between VMs and hosts.

• A host maintenance mode for hardware changes or software 
upgrades, which evacuates running VMs from one host to other 
hosts in the cluster.

In this paper, we discuss the design and implementation of DRS and 
a related technology called DPM (for dynamic power management). 
DRS provides automated resource-management capabilities for a 
cluster of hosts. DPM extends DRS with automated power management, 
powering off hosts (placing them in standby) during periods of low 
utilization, and powering them back on when needed [9].

Our experimental evaluation demonstrates that DRS is able to 
meet resource-management goals while improving the utilization 
of underlying hardware resources. We also show that DPM can save 
significant power in large configurations with many hosts and VMs. 
Both of these features have been shipping as VMware products  
for more than five years. They have been used by thousands of 
customers to manage hundreds of thousands of hosts and millions  
of VMs world-wide.

The remainder of the paper is organized as follows. We discuss the 
resource model supported by DRS in Section 2. Section 3 explains 
the details of the DRS algorithm, and Section 4 discusses DPM. 
Section 5 contains an extensive evaluation of DRS and DPM based on 
both a real testbed and an internal simulator used to explore alternative 
solutions. We discuss lessons learned from our deployment experience 
in Section 6. Section 7 highlights opportunities for future work.  
A survey of related literature is presented in Section 8, followed  
by a summary of our conclusions in Section 9.
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2.3 Resource Pool Divvy
A resource pool represents an aggregate resource allocation that may 
be consumed by its children. We refer to the process of computing 
the entitled reservation, limit and shares of its child sub-pools and 
VMs as divvying.

Divvying is performed in a hierarchical manner, dividing the resources 
associated with a parent pool among its children. Divvying starts 
from the root of the resource pool hierarchy, and ultimately ends 
with the VMs at its leaves. DRS uses the resulting entitlements to 
update host-level settings properly, ensuring that controls such as 
reservations and limits are enforced strictly by the ESX hypervisor. 
DRS also uses host-level entitlement imbalances to inform VM 
migration decisions.

During divvying, DRS computes resource entitlements for individual 
pools and VMs. Divvying computations incorporate user-specified 
resource controls settings, as well as per-VM and aggregate workload 
demands. Since pool-level resource allocations reflect VM demands, 
DRS allows resources to flow among VMs as demands change. This 
enables convenient multiplexing of resources among groups of VMs, 
without the need to set any per-VM resource controls.

Divvying must handle several cases in order to maintain the resource 
pool abstraction. For example, it is possible for the total reservation 
of a parent pool to be greater than the sum of its childrens’ reservations. 
Similarly, the limit at a parent pool can be smaller than the sum of its 
childrens’ limit values. Finally, a parent’s shares need to be distributed 
among its children in proportion to each child’s shares value. In all 
such cases, the parent values need to be divided among the children 
based on the user-set values of reservation, limit, shares and the 
actual runtime demands of the children.

Three divvy operations are defined: reservation-divvy, limit-divvy, 
and share-divvy, named for their respective resource controls. DRS 
carries out these divvy operations periodically (by default, every 5 
minutes), reflecting current VM demands. DRS also initiates divvy 
operations in response to changes in resource allocation settings.

The divvy algorithm works in two phases. In the first, bottom-up 
phase, divvying starts with the demand values of the individual 
VMs, which are the leaf nodes. It then accumulates aggregate 
demands up the resource pool tree.

VM demands are computed by the ESX hypervisor for both CPU 
and memory. A VM’s CPU demand is computed as its actual CPU 
consumption, CPUused, plus a scaled portion of CPUready, the time 
it was ready to execute, but queued due to contention:

 (1)

A VM’s memory demand is computed by tracking a set of 
randomly-selected pages in the VM’s physical address space, and 
computing how many of them are touched within a certain time 
interval [49]. For example, if 40% of the sampled pages are touched 
for a VM with 16 GB memory allocation, its active memory is estimated 
to be 0.4 X 16 = 6.4 GB.

2.2 Resource Pools
In addition to basic, per-VM resource controls, administrators and 
users can specify flexible resource-management policies for groups 
of VMs. This is facilitated by introducing the concept of a logical 
resource pool — a container that species an aggregate resource 
allocation for a set of VMs. A resource pool is a named object with 
associated settings for each managed resource — the same familiar 
shares, reservation, and limit controls used for VMs. Admission 
control is performed at the pool level; the sum of the reservations 
for a pool’s children must not exceed the pool’s own reservation.

Resource pools may be configured in a flexible hierarchical organization; 
each pool has an enclosing parent pool, and children that may be VMs 
or sub-pools. Resource pools are useful for dividing or sharing 
aggregate capacity among groups of users or VMs. For example, 
administrators often use resource-pool hierarchies to mirror 
human organizational structures. Resource pools also provide 
direct support for delegated administration; an administrator can 
allocate resources in bulk to sub-administrators using sub-pools.

Figure 1 shows a resource pool structure defined by an example 
organization. Here the resources are first split across two groups, 
Business and Testing. Business is further sub-divided into IT and 
Sales groups, while Testing is a flat collection of VMs. Separate, 
per-pool allocations provide both isolation between pools, and 
sharing within pools.

For example, if some VMs within the Sales pool are idle, their unused 
allocation will be reallocated preferentially to other VMs within the 
same pool. Any remaining spare allocation flows preferentially to other 
VMs within Business, its enclosing parent pool, then to its ancestor, 
Org. Note that in a resource-pool hierarchy, shares are meaningful 
only with respect to siblings; each pool effectively defines a scope 
(similar to a currency [50]) within which share values are interpreted.

A distinguished root resource pool for a cluster represents the physical 
capacity of the entire cluster, which is divvied up among its children. 
All resource pools and VMs in a cluster are descendants of the root 
resource pool.

Figure 1. Resource pool tree. R, L, and S denote reservation, limit, and share values, 
respectively, and are specified for each internal node (pool) and leaf node (VM).
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in absolute CPU units (GHz). The user-set resource control values are 
denoted by U, and the final divvied values are denoted by D. Although 
this example shows only CPU divvying, a similar computation is 
performed for memory.

In Figure 2, there are two resource pools under the root, RP1 and 
RP2, each with two child VMs. First, the bottom-up divvying phase 
aggregates demands up the tree, starting with individual VM demands. 
Next, the top-down divvying phase starts at the root node, doing 
reservation and limit divvy recursively until reaching the leaf nodes.

The 10 GHz reservation at the root is greater than the 5 GHz sum  
of its childrens’ reservations. Thus, the reservation is divvied based 
on shares, while meeting all the divvying constraints. In this case, 
the shares-based allocation of 8 GHz and 2 GHz satisfies the reservation 
and limit values of the two resource pools. Next, the reservation of 
8 GHz at RP1 is divvied among VM1 and VM2. Since 8 GHz is smaller 
than the aggregate demand of 10 GHz from VM1 and VM2, we replace 
the limit values of VM1 and VM2 by their demand values of 3 GHz 
and 7 GHz, respectively. As a result, even though the shares of these 
two VMs are equal, the divvied reservations are 3 GHz and 5 GHz 
(instead of 4 GHz each). This illustrates how demands are considered 
while allocating a parent’s reservation.

Note that VM demands do not act as an upper bound while divvying 
limit values here, since the sum of the children’s demands is smaller 
than the limit at the parent. As a result, the actual limit values of the 
children are used in the divvying. Shares are simply distributed in 
proportion to the shares of the children. Although we have not walked 
through every computation in this resource pool tree, one can verify 
that both reservation and limit values can be divvied in a top-down 
pass starting from root, while considering user-set values and 
current demands.

3. DRS Overview and Design
DRS is designed to enforce resource-management policies accurately, 
delivering physical resources to each VM based on the resource model 
described in the previous section.

Once the per-VM demand values have been computed, they are 
aggregated up the tree. Demand values are updated to always be 
no less than the reservation and no more than the limit value. Thus, 
at each node, the following adjustments are made:

       (2)

(3)

The second divvying phase proceeds in a top-down manner. 
Reservation and limit values at each parent are used to compute  
the respective resource settings for its children such that the 
following constraints are met:

1. Child allocations are in proportion to their shares.

2. Each child is allocated at least its own reservation.

3. No child is allocated more than its own limit.

In order to incorporate demand information, if the sum of the childrens’ 
demands is larger than the quantity (reservation or limit) that is being 
parceled out, we replace the limit values of the children by their 
demand values:

(4)

This allows reservation and limit settings at a parent to flow among 
its children based on their actual demands.

Conceptually, the divvy algorithm at a single level in the tree can 
be implemented by first giving the reservation to every child. Then 
the extra reservation or limit, depending on what is being divvied 
out, can be allocated in small chunks to the children, by giving a 
chunk to the child with minimum value of current allocation/shares. 
If a child’s current allocation hits its limit, that child can be taken 
out from further consideration and capped at the limit.

The share-divvy is performed simply by dividing a parent’s shares 
among its children, in proportion to the shares of each child. Demands 
do not play any role in the share-divvy operation.

We illustrate the divvy operations using a simple example with a 
two-level resource pool tree. Figure 2 shows a resource pool tree 
with CPU reservation R = 10 GHz, limit L = 20 GHz and shares S = 1000 
at the root node. Shares are unitless and the other two settings are 

Figure 2. Resource pool divvy example. U denotes the user-set values and D denotes 
the divvied values. The special Max limit value indicates the allocation is not limited.

Figure 3. VMware DRS runs as part of the VMware vCenter server management 
software. VMware DRS collects statistics about hosts and VMs and runs periodically  
or on demand.
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As illustrated in Figure 3, DRS runs as part of the vCenter Server 
centralized management software [11]. It manages resources for  
a cluster of ESX hosts as well as the VMs running on them. More 
specifically, DRS performs four key resource-management operations: 
(1) It computes the amount of resources to which each VM is entitled 
based on the reservation, limit and shares values and the runtime 
demands for all related VMs and resource pools, (2) It recommends 
and performs migration of powered-on VMs to balance load across 
hosts in a dynamic environment where VMs’ resource demands 
may change over time, (3) It optionally saves power by invoking 
DPM, and (4) It performs initial placement of VMs onto hosts, so 
that a user does not have to make manual placement decisions.

DRS load balancing is invoked periodically (by default, every 5 minutes) 
to satisfy cluster constraints and ensure delivery of entitled resources. 
It is also invoked on demand when the user makes cluster configuration 
changes, e.g., adding a host to the cluster, or requesting that a host 
enter maintenance mode. When DRS is invoked, it performs the 
first three resource-management operations listed above, along 
with a pass to correct cluster constraint violations. For example, 
constraint correction evacuates VMs from hosts that the user has 
requested to enter maintenance or standby mode. 

DRS initial placement assigns a VM to a host within a cluster when 
the VM is powered-on, resumed from a suspended state, or migrated 
into the cluster manually. DRS initial placement shares code with 
DRS load balancing to ensure that placement recommendations 
respect constraints and resource entitlements.

In this section, we first discuss DRS load balancing, since it forms the 
core of the functionality that supports the resource model discussed 
in the Section 2. We next outline how DRS initial placement works, 
highlighting how it builds on the DRS load-balancing model. We 
conclude by presenting the kinds of constraints DRS respects, and 
how they are handled. DPM is discussed in Section 4.

3.1 Load Balancing
We first examine the DRS load-balancing metric and algorithm. 
We then consider in more detail how DRS analyzes possible load-
balancing moves in terms of their impact on addressing imbalance, 
their costs and benefits, and their interaction with pending and 
dependent actions.

3.1.1 Load Balancing Metric
The DRS load-balancing metric is dynamic entitlement, which differs 
from the more commonly-used metric of host utilization in that it 
reflects resource delivery in accordance with both the needs and 
importance of the VMs. Dynamic entitlement is computed based 
on the overall cluster capacity, resource controls, and the actual 
demand for CPU and memory resources from each VM.

A VM’s entitlement for a resource is higher than its reservation and 
lower than its limit; the actual value depends on the cluster capacity 
and total demand. Dynamic entitlement is equivalent to demand 

when the demands of all the VMs in the cluster can be met; otherwise, 
it is a scaled-down demand value with the scaling dependent on 
cluster capacity, the demands of other VMs, the VM’s place in the 
resource pool hierarchy, and its shares, reservation and limit.

Dynamic entitlement is computed by running the divvy algorithm 
over the resource pool hierarchy tree. For entitlement computation, 
we use the cluster capacity at the root as the quantity that is divvied 
out. This is done for both CPU and memory resources separately.

DRS currently uses normalized entitlement as its core per-host 
load metric, reflecting host capacity as well as the entitlements of 
the running VMs. For a host h, normalized entitlement Nh is defined 
as the sum of the per-VM entitlements Ei for all VMs running on h, 
divided by the host capacity Ch available to VMs: . If  

 
 then all VMs on host h would receive their entitlements. If , 
then host h is deemed to have insufficient resources to meet the 
entitlements of all its VMs, and as a result, the VMs on that host 
would be treated unfairly as compared to VMs running on hosts 
whose normalized entitlements were not above 1.

After calculating Nh for each host, DRS computes the cluster-wide 
imbalance, Ic, which is defined as the standard deviation over all Nh 
values. The cluster-wide imbalance considers both CPU and memory 
imbalance using a weighted sum, in which the weights depend on 
resource contention. If memory is highly contended, i.e., its max 
normalized entitlement on any host is above 1, then it is weighted 
more heavily than CPU. If CPU is highly contended, then it is weighted 
more heavily than memory; equal weights are used if neither resource 
is highly contended. The ratio 3:1, derived by experimentation, is 
used when one resource is weighted more heavily than the other.

3.1.2 Load Balancing Algorithm
The DRS load-balancing algorithm, described in Algorithm 1, uses  
a greedy hill-climbing technique. This approach, as opposed to an 
exhaustive, offline approach that would try to find the best target 
balance, is driven by practical considerations. The live migration 
operations used to improve load-balancing have a cost, and VM 
demand is changing over time, so optimizing for a particular 
dynamic situation is not worthwhile.

DRS aims to minimize cluster-wide imbalance, Ic, by evaluating all 
possible single-VMmigrations, many filtered quickly in practice, and 
selecting the move that would reduce Ic the most. The selected move 
is applied to the algorithm’s current internal cluster state so that it 
reflects the state that would result when the migration completes. 
This move-selection step is repeated until no additional beneficial 
moves remain, there are enough moves for this pass, or the cluster 
imbalance is at or below the threshold T specified by the DRS 
administrator. After the algorithm completes, an execution  
engine performs the recommended migrations, optionally 
requiring user-approval.
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This overview of the DRS algorithm has been greatly simplified to 
focus on its core load-balancing metric. The actual load-balancing 
algorithm considers many other factors, including the impact of the 
move on imbalance and the risk-adjusted benefit of each move. The 
next sections describe these checks and other factors in more detail.

3.1.3 Minimum Goodness
DRS load balancing rejects a move if it does not produce enough 
benefit in terms of improvement in the standard deviation value 
representing imbalance. The threshold used for this filtering is 
computed dynamically based on the number of hosts and VMs. 
The threshold is reduced significantly when imbalance is very high 
and moves to correct it are filtered by the normal threshold, so that 
many low-impact moves can be used to correct high imbalance.

3.1.4 Cost-Benefit Analysis
The main check DRS uses to filter unstable moves is cost benefit 
analysis. Cost-benefit analysis considers the various costs involved 
in the move by modeling the vMotion costs as well as the cost to the 
other VMs on the destination host which will have an additional VM 
competing for resources. The benefit is computed as how much the 
VMs on the source and the migrating VM will benefit from the move. 
Cost-Benefit analysis also considers the risk of the move by predicting 
how the workload might change on both the source and destination 
and if this move still makes sense when the workload changes.

The cost is modeled by estimating how long this VM would take to 
migrate. The migration time mainly depends on the memory size 
of the VM as well as how actively the VM modifies its pages during 
migration. If the VM dirties its pages frequently during vMotion, 
they must be copied to the destination host multiple times.

DRS keeps track of the transfer rate based on the history of migration 
times for each VM and host. Based on the transfer rate and current 
memory size, it calculates the time required for single round of 
copying. During this time the cost is computed as the resources 
required for the migrating VM to exist on the destination. The 
vMotion cost is in the unit of resources (MHz or MB) over time.

The vMotion process itself consumes some resources on both the 
source and destination hosts and this is also added as a cost. DRS 
then computes how much the workload inside the VM would suer 
due to migration. This is done by measuring how actively the VM 
writes to its memory pages and how much time each transfer takes. 
DRS approximates this by measuring the number of times the VM 
had to be descheduled by the CPU scheduler during past vMotions 
and how active the VM was at that time. The performance degradation 
due to the increased cost of modifying memory during migration  
is computed. This value is used to extrapolate how much the VM 
would suer by taking into account its current consumption and 
added to the cost. This cost is also measured in units of resources 
over time, such as CPU seconds.

The vMotion benefit is also measured in resources over time. The 
benefit is computed by calculating how much of the demand for 
the candidate VM is being clipped on the source versus the increased 
amount of demand that is expected to be satisfied on the destination. 
The benefit also includes the amount of unsatisfied demand for 
other VMs on the source that will be satisfied after the VM moves 
off. To represent possible demand changes, demand is predicted 
for all VMs on the source and destination. Based on the workloads 
of all these VMs, a stable time is predicted after which we assume 
the VM workloads will change to the worst configuration for this 
move, given recent demand history (by default, for the previous 
hour). The use of this worst-case value is intended to make the 
algorithm more conservative when recommending migrations.

With respect to the source host, the worst possible situation is 
computed as one in which, after the stable time, the workloads  
of the VMs on the source exhibit the minimum demand observed 
during the previous hour. With respect to the destination host, the 
worst possible situation is computed as one in which the demands 
for the VMs on the destination including the VM being moved are 
the maximum values observed in the last one hour. By assuming 
this worst-case behavior, moves with benefits that depend on  
VMs with unstable workloads are filtered out.

3.1.5 Pending Recommendations
DRS considers the recommendations in flight and any pending 
recommendations not yet started, so that it does not correct the 
same constraint violation or imbalance several times. VMs that are 
currently migrating are treated as if they exist on both source and 
destination. New recommendations that would conflict with 
pending recommendations are not generated.

Figure 4: Overview of DRS Cost-Benet analysis

Algorithm 1: DRS Load Balancing
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However, one way that placement differs from load balancing  
is that placement considers any prerequisite moves that may be 
necessary. If a VM cannot be placed without a constraint violation 
on any powered-on host in the cluster, DRS next considers placing 
the VM on each of the hosts, while attempting to correct the resulting 
constraint violations via prerequisite moves of other VMs on the 
host. And if no such placement on powered-on hosts is possible, 
DRS considers powering-on standby hosts for the VM via DPM.

DRS also handles the initial placement of fault tolerant (FT) VMs 
[6]. An FT VM consists of both primary and secondary VMs, with 
the secondary being a replica of the primary that runs in lock-step 
to allow immediate failover. The primary and secondary VMs must 
be placed on different hosts that are vMotion compatible. Since it 
is computationally very expensive to consider all possible pairs of 
hosts, DRS places the primary VM on the best possible host in terms 
of goodness. Then, from the subset of hosts that are vMotion-
compatible with the primary, it picks the best host for the secondary.  
If no secondary host can be found, it considers the second-best 
host for the primary and tries again. This process is repeated until 
a host is found for both primary and secondary or there are no 
more hosts left to consider for the primary VM.

3.3 Constraints
The fundamental constraint respected by DRS is VM-to-Host 
compatibility, i.e., the ability of a host to satisfy a VM’s execution 
requirements. VM-to-Host compatibility information is passed to 
DRS from the compatibility-checking module of the vCenter 
management software, and DRS respects this constraint during  
load balancing and VM placement.

In addition, DRS provides support for enforcing a set of constraints 
to handle various use cases such as co-location of VMs for performance, 
placement of VMs on separate hardware for availability and fault 
isolation, and affinity to particular hardware to handle licensing 
issues. It also handles evacuation of hosts the user has requested  
to enter maintenance or standby mode, preservation of spare 
resources for failover, and the role of special VMs that provide 
services to other VMs. DRS respects constraints during VM initial 
placement and runs a pass prior to load balancing to correct 
violations of DRS-enforced constraints, reporting errors for any  
of those constraints that cannot be corrected. We discuss several 
constraints and their specific use cases next.

3.3.1 Affinity Rules
DRS supports VM-to-VM or VM-to-Host rules, which are used for  
a variety of common business scenarios. VM-to-VM anti-affinity 
rules define a set of VMs that are to be kept on separate hosts. These 
rules are typically used for availability and are mandatory, i.e., DRS 
will not make any recommendation that would violate them. For 
example, avoiding a single point of failure due to running two VMs 
on the same host. VM-to-VM affinity rules define a set of VMs that 
are to kept on the same host and are used to enhance performance 
of communicating VMs, because intra-host VM-to-VM networking 
is optimized to perform in-memory packet transfers, without using 
NIC hardware. These rules are mandatory for load-balancing, but 

3.1.6 Move Dependency
When DRS generates a sequence of moves, some VM migrations  
in the sequence may depend on capacity freed up on a host by a 
VM migration off that host earlier in the sequence. For example, 
during the constraint violation correction step, DRS may generate  
a recommendation to move VM x off of host A to correct a rule 
violation, and then during the load-balancing step, it may generate  
a recommendation to move VM y to host A that depends on the 
resources freed up by the migration of VM x. For such sequences, 
the second move should be executed only after the first move 
succeeds. DRS can designate dependencies within its output 
recommendations, and these dependencies are respected by  
the DRS recommendation execution engine. DRS does not issue 
sequences of moves whose dependencies cannot be satisfied.

3.1.7 Host-level Resource Settings
As mentioned in section 2.3, in maintaining the illusion that the 
cluster is a single large host with the aggregate capacity of its 
constituent hosts, DRS breaks up the user-specified resource-pool 
hierarchy into per-host resource pool hierarchies with appropriate 
host-level resource pool settings. Thus, while the VMs are running 
on a host, the local schedulers on each ESX host allocate resources 
to VMs fairly, based on VM resource settings and on the host-level 
resource pool tree provided to the host by DRS.

At the beginning of each balancing invocation, DRS runs the 
reservation-divvy and limit-divvy algorithm discussed in Section 2.3,  
to capture the impact of any changes in VM demand over time. Based 
on any differences between the updated divvy results and those 
the algorithm last produced, DRS generates recommendations to 
adjust the resource trees and settings on hosts in the cluster, in 
accordance with the VMs running on that host.

3.2 VM Initial Placement
DRS VM initial placement is invoked to perform admission control 
and host selection for VM power-on, for resumption of a suspended 
VM, or for manual migration of a running VM into a cluster. DRS can 
be asked to place a single VM, for which it attempts to generate one 
or more alternative host placement recommendations, or it can be 
asked to place a set of VMs, for which it attempts to generate a single 
coordinated recommendation comprised of a placement action for 
each VM. The latter handles the placement of multiple VMs more 
efficiently and effectively than a series of individual VM placements, 
because it builds a single representation of the cluster to place the 
set of VMs and because the algorithm can order its placement of 
the VMs to facilitate bin-packing. Specific errors are issued for any 
VMs DRS cannot place.

During placement, DRS does not have an estimate of the VM’s current 
CPU and memory demand. It makes the conservative assumption 
that the VM being placed will consume its maximum possible load, 
i.e., that its memory demand will match its configured memory size 
and its CPU demand will be such that each of its virtual CPUs (vCPUs) 
will consume a physical core. DRS placement code leverages the 
DRS load-balancing code to evaluate the relative goodness of  
each possible placement.
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Spare VMs are also used in the unusual event that more resources 
are needed for failure restart than expected due to the failure of more 
hosts than configured by the HA policy. For any VMs that HA cannot 
restart, DRS is invoked with spare VMs representing their configuration, 
with the idea that it may be able to recommend host power-ons 
and migrations to provide the needed resources.

3.3.3 ESX Agent VMs
Some services that an ESX host provides for VM use (e.g., vShield [15]) 
are encapsulated in VMs; these VMs are called ESX Agent VMs. An 
agent VM needs to be powered on and ready to serve prior to any 
non-agent VM being powered on or migrated to that host, and if 
the host is placed in maintenance or standby mode, the agent VM 
needs to be powered off after the non-agent VMs are evacuated 
from the host.

To support agent VMs, DRS respects their role as part of the host 
platform, which has a number of implications. The DRS algorithm 
does not produce recommendations to migrate or place non-agent 
VMs on hosts on which required agent VMs are not configured. On 
hosts with configured agent VMs, the DRS algorithm respects the 
agent VMs’ reserved resources even when they are not in a ready-
to-serve state. The DRS execution engine understands that non-agent 
VMs need to wait for required agent VMs to be powered on and ready 
to serve on the target host. And the DRS load-balancing code 
understands that agent VMs do not need to have evacuation 
recommendations produced for them when a host is entering 
maintenance or standby mode; the agent VMs are automatically 
powered off by the agent VM framework after the non-agent  
VMs are evacuated.

4. DPM Overview and Design
Distributed Power Management (DPM) is a feature of DRS that 
opportunistically saves power by dynamically right-sizing cluster 
capacity to match workload demands, while respecting all cluster 
constraints. DPM recommends VM evacuation and powering off 
ESX hosts when the cluster contains sufficient spare CPU and memory 
resources. It recommends powering ESX hosts back on when either 
CPU or memory resource utilization increases appropriately or 
additional host resources are needed to meet cluster constraints, 
with DRS itself recommending host power-ons for the latter reason. 
DPM runs as part of the DRS balancing invocation as an optional 
final phase.

Note that in addition to DPM, each ESX host performs Host Power 
Management (HPM), which uses ACPI P-states and C-states [12] on 
ESX hosts to reduce host power consumption while respecting VM 
demand. HPM works synergistically with DPM in reducing overall 
cluster power consumption, with DPM reducing the number of running 
hosts and HPM reducing the power consumed by those hosts.

DPM decouples the detection of the need to consider host power-on 
or power-off from the selection of the host, which allows host selection 
to be independent of how the hosts are currently utilized. This means 
that DPM host selection for power-off does not depend on finding 
hosts on which both CPU and memory utilization are currently low; 
DPM can migrate VMs to exploit low utilization of these resources 

DRS will violate them if necessary to place VM(s) during power-on. 
VM-to-VM rule violations are corrected during the initial phase of  
a load-balancing run and that corrected state is maintained during 
load balancing. For VM-to-VM anti-affinity, potential balancing 
moves introducing violations are filtered; for VM-to-VM affinity, 
potential balancing moves are formed by treating each set of  
affine VMs on a host as if it were a single large VM.

VM-to-Host rules define a set of VMs being affine or anti-affine 
with a set of hosts. These rules can be specified as mandatory or 
preferred, with the latter meaning that they are enforced unless 
they engender additional constraint violations or cannot be respected 
without causing host overutilization. VM-to-Host rules are useful 
for a variety of reasons. Mandatory VM-to-Host affinity rules are 
often used to enforce licensing, to associate VMs requiring a host-
based software license with the hosts having that license. Preferred 
VM-to-Host affinity or anti-affinity rules are often used to manage 
availability and/or site locality.

Mandatory VM-to-Host rules are represented in the VM-to-Host 
compatibility information passed to DRS and hence are handled as 
a fundamental constraint. Preferred VM-to-Host rules are represented 
as alternative VM-to-Host compatibility information. DRS handles 
preferred VM-to-Host rules by running a what-if pass with the preferred 
rules treated as mandatory. If the resulting cluster state has no constraint 
violations or overutilized hosts, the result of the pass is accepted. 
Otherwise, DRS retries the what-if pass with the preferred rules 
dropped and accepts the latter result if it has fewer constraint 
violations or overutilized hosts, else it accepts the former result.

3.3.2 High Availability
vSphere High Availability [7] (HA) is a cluster service that handles 
host failures, and restarts failed VMs on remaining healthy hosts. HA 
runs as a decentralized service on the ESX hosts and keeps track of 
liveness information through heart-beat mechanisms. DRS supports 
HA functionality in two ways: by preserving powered-on idle resources 
to be used for VM restart in accordance with the HA policy and by 
defragmenting resources in the cluster when HA restart cannot 
find sufficient resources.

For DRS to preserve enough powered-on idle resources to be used 
for VM restart, HA needs to express to DRS the resources required 
based on HA policy settings. HA supports three methods by which 
users can express the resources they need preserved for failover: 
(1) the number of host failures they would like to tolerate, (2) the 
percentage of resources they would like to keep as spare, and (3) 
the designation of particular host(s) as failover hosts, which are 
not used for running VMs except during failover.

HA expresses the implication of these policies to DRS using two 
kinds of constraints: the minimum amount of CPU and memory 
resources to be kept powered-on and the size and location of 
unfragmented chunks of resources to be preserved for use during 
failover. The latter is represented in DRS as spare VMs, which act 
like special VMs with reservations used to ensure DRS maintains 
spare resource slots into which VMs can be failed over and whose 
VM-to-Host compatibility information is used to create those slots 
on appropriate hosts.
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DPM computes a cluster-wide high and a low score for each resource. 
Considering the hosts whose utilization for the power-on demand 
period is above the high-utilization threshold (default 81%):

Considering the hosts whose utilization for the power-off demand 
period is below the low utilization threshold (default 45%):

If the high score is greater than zero for either CPU or memory, 
DPM considers producing host power-on recommendations. 
Otherwise, if the low score is greater than zero for both CPU and 
memory (possibly on different hosts), DPM considers producing 
host power-off recommendations. The key intuition behind this 
scoring is that we want to identify cases where a subset of hosts 
may have very high or very low utilizations that can be acted upon 
by suggesting power-on and power-off operations respectively.

4.2 Host Power-off Recommendations
DPM considers host power-off in the current invocation if two 
criteria are met: non-zero low scores for both CPU and memory 
and zero high scores for both. To evaluate various alternatives, 
DPM considers each candidate host in a sorted order. If a candidate 
host power-off passes both the cluster utilization and cost-benefit 
evaluations described below, the recommendation to power it off 
along with its prerequisite VM evacuation recommendations is 
added to the list of the recommendations that will be issued by this 
invocation of DRS. The internal representation of the cluster is then 
updated to reflect the effects of this recommendation. DPM continues 
to consider host power-off until either the cluster utilization scores 
no longer show both low CPU and memory utilization or there are 
no more candidate hosts to be considered.

For a candidate host, DPM runs DRS in a what-if mode to correct 
constraints and load balance the cluster assuming that the host 
were entering standby. If what-if DRS can fully evacuate the host, 
DPM evaluates the resulting cluster state using the utilization scores 
given in the previous section and compares the scores with those 
of the cluster state before the host power-off was considered. If 
the cluster low utilization score is lowered and if the cluster high 
utilization score is not increased, then the candidate host power-
off is next subjected to DPM power-off cost-benefit analysis.

DPM cost-benefit analysis considers the risk-adjusted costs and 
benefits of the power-off. The costs include the CPU and memory 
resources associated with migrating VMs off the powering-off host 
and the corresponding resources associated with repopulating the 
host when it powers back on in the future. The costs also include 
the risk-adjusted resource shortfall with respect to satisfying VM 
demand if the host’s CPU and/or memory resources are needed to 
meet that demand while the host is entering standby, powered-off, 
or rebooting. The risk-adjusted resource shortfall is computed 

currently not manifest on the same host. And more importantly, 
this decoupling means that DPM host selection for power-off can 
consider criteria that are more critical in the longer term than 
current utilization, such as headroom to handle demand burst, 
power efficiency, or temperature.

For example, host A may currently have lower CPU and memory 
utilization than host B, but host B may be a better candidate for 
power-off, because it is smaller than host A and hence is less able 
to handle VM demand burst than host A, or it is less power-efficient 
than host A, or it is in a hotter part of the datacenter than host A.

In this section, we first discuss how DPM evaluates the utilization  
of the powered-on hosts to determine if it should suggest host 
power-off or power-on recommendations. Next, we examine how 
DPM evaluates possible recommendations. Finally, we explain how 
DPM sorts hosts for power-on or power-off consideration. Note that 
this section includes a number of specific factors whose defaults were 
chosen based on experimental data; the default values are included 
to illustrate how the system is typically configured, but all of these 
values can be tuned by the user if desired.

4.1 Utilization Evaluation
To determine whether the currently powered-on cluster capacity  
is appropriate for the resource demands of the running VMs, DPM 
evaluates the CPU and memory resource utilization (VM demand 
over capacity) of powered-on hosts in the cluster. Utilization can 
exceed 100% since demand is an estimate of VM resource consumption 
assuming no contention on the host. As mentioned in Section 2.3, 
a VM’s CPU demand includes both its CPU usage and a portion of 
its ready time, if any. A VM’s memory demand is an estimate of its 
working set size.

DPM considers demand over an extended time period and it uses 
the mean demand over that period plus two standard deviations 
for the utilization calculation. This makes DPM conservative with 
respect to host power-off, which is the bias customers prefer. In 
order to be relatively quick to power-on a host in response to demand 
increases and relatively slow to power-off a host in response to 
demand decreases, the time period used for host power-off is  
the last 40 minutes and for host power-on is the last 5 minutes.

Utilization is characterized with respect to a target range of 45-81% 
(i.e., 63 +/-18), with utilization above 81% considered high and utilization 
below 45% considered low. DPM evaluates cluster utilization using a 
measure that incorporates CPU and memory utilization on a per-host 
basis in such a manner that higher utilizations on certain hosts are 
not offset by lower utilizations on other hosts. This is done because 
DRS cannot always equalize VM load across hosts due to constraints.

Use of this metric allows DPM to consider host power-on to address 
high utilization on a few hosts in the cluster (e.g., ones licensed to 
run Oracle VMs) when the overall utilization of the powered-on 
hosts in the cluster is not high, and to consider host power-off to 
address low utilization on a few hosts in the cluster (e.g., ones not 
connected to a popular shared storage device) when the overall 
utilization of the powered-on hosts in the cluster is not low. Note 
that DPM executes on a representation of the cluster produced  
by a complete DRS load balancing pass.
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5. Experimental Evaluation
In this section, we present the results of an extensive evaluation of 
DRS and DPM using an in-house simulator and experiments on a real 
testbed. In the first subsection, we present the results using a cluster 
simulator to show how DRS load-balancing improves the amount 
of CPU and memory resources delivered to a set of VMs as compared 
to those delivered without DRS load-balancing; we also highlight 
the need and impact of DRS cost-benefit analysis and of DPM.

In the second subsection, we present results gathered on a real 
cluster to illustrate the effectiveness of the DRS algorithm using a 
variety of metrics. And finally, we will present the results gathered 
on a real cluster that includes power measurements to show the 
performance of DPM and to demonstrate the benefit of using  
DPM in addition to host power management [13].

5.1 Experimental Results from Simulation
5.1.1 Simulator Design
To develop and evaluate various algorithms, we implemented a 
simulator that simulates a cluster of ESX hosts and VMs. The simulator 
allows us to create different VM and host profiles in order to experiment 
with different configurations. For example, a VM can be defined in 
terms of a number of virtual CPUs (vCPUs), configured CPU (in MHz) 
and configured memory size (in MB). Similarly a host can be defined 
using parameters such as number of physical cores, CPU (MHz)  
per core, total memory size, power consumption when idle etc.  
In terms of workload, the simulator supports arbitrary workload 
specifications for each VM over time and generates CPU and 
memory demand for that VM based on the specification.

Based on the physical characteristics of the host, VM resource 
demands and specifications, the simulator mimics ESX CPU and 
memory schedulers and allocates resources to the VMs in a manner 
consistent with the behavior of ESX hosts in a real DRS cluster. The 
simulator supports all the resource controls supported by the real 
ESX hosts, including reservation, limit and shares for each VM along 
with the resource pools.

The simulator generates the allocation each VM receives, whenever 
there is any change in demand by any of the VMs on the host. The 
simulator supports vMotion (live migration) of VMs, models the cost 
of vMotion and the impact on the workload running in the VM, based 
on a model of how vMotion works in a physical ESX host. The simulator 
also takes into account the resource settings for the resource pool 
trees on the host when resources are divvyed out, similar to how the 
real ESX host divvies out the host resources based on the host-level 
resource pool hierarchy.

The simulator was used to study configurations of VMs and hosts 
and how the algorithm performs in terms of improving the resource 
allocation to the VMs by placing and moving the VMs at the right 
time. If the algorithm causes too many migrations, it will affect the 
workload negatively as the migrations may require a non-trivial 
amount of time and the workload performance will be degraded 
during migration.

The production DRS algorithm code is compiled into this simulator. 
This allows the quality of the moves can be evaluated using all the 
modeling done by the simulator and decisions made by DRS or DPM. 

assuming the current demand persists for the expected stable 
time of that demand given an analysis of recent historical stable 
time, after which demand spikes to a “worst-case” value. This value  
is defined to be the mean of the demand over the last 60 minutes 
plus three standard deviations.

The benefit is the power saved during the time the host is expected  
to be down, which is translated into CPU and memory resource 
currency (the host’s MHz or MB multiplied by time in standby) to  
be weighed against cost. By default, the benefit must outweigh 
the cost by 40x to have the power-off pass DPM’s cost benefit 
filter; this value was chosen based on experimentation to match 
customer preference of not impacting performance to save power.

4.3 Host Power-on Recommendations
DPM evaluates host power-on given high CPU or memory utilization 
of any powered-on host. DPM considers each candidate host in a 
sorted order. If a candidate host power-on passes the cluster utilization 
evaluation described below, the recommendation to power it on is 
added to the list of recommendations generated by DRS. The internal 
representation of the cluster is also updated to reflect the effects 
of this recommendation. DPM continues to consider host power-on 
until either the cluster utilization scores no longer show either high 
CPU or memory utilization or there are no more candidate hosts to 
be considered.

For a candidate host, DPM runs DRS in a what-if mode to correct 
constraints and load balance the cluster assuming that host were 
powered-on. If the host power-on reduces the high utilization score, 
then the stability of that improvement is evaluated. Stability of the 
improvement involves checking that the greedy rebalancing performed 
by DRS in the presence of that host was better because of the addition 
of that host. This is checked by doing a what-if power-off of the 
same candidate host and checking that the improvement in the 
high-utilization score obtained by considering its power-on does 
not remain. If the host power-on benefit is stable, then the host is 
selected for power-on. Some extra evaluation is performed for the 
last host needed to address all remaining high utilization in the cluster. 
In that case, DPM evaluates multiple hosts until it finds one that 
decreases the high score and provides minimum or zero increase  
in the low utilization score.

4.4 Sorting Hosts for Power-on/off
As mentioned earlier, DPM considers the hosts for evaluation in a 
sorted order. DPM currently prefers to keep larger servers powered-on, 
motivated by the fact that they provide more resource headroom 
and that they typically are more efficient at amortizing their idle 
power consumption, which for datacenter-class servers often 
exceeds 60% of their peak power. For servers of the same size, 
cost of evacuation is a secondary criteria for power-off consideration 
and randomization for wear-leveling is a secondary criteria for 
power-on consideration.

As long as some host in the order satisfies the necessary conditions, 
it is selected and the corresponding operation is applied to that 
host in the internal snapshot. The rest of the DPM evaluation is 
conducted with that host in the new state. Thus DPM doesn’t 
select a host that leads to maximum improvement in the scores,  
but uses this sorted list as the greedy order.
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Using the simulator we first show the benefits of DRS load balancing. 
We simulated an environment consisting of 30 hosts and 400 VMs. 
The simulated hosts were each configured with 8 cores and 3 GB of 
RAM. The VMs were all configured as uniprocessors (with a single 
vCPU) and had a High-Low workload pattern inducing a demand 
of either 600 or 1800 MHz randomly for 600 seconds, followed by 
an inactive period where they would demand 100 MHz for another 
600 seconds. The VMs had constant memory demand of 220 MB 
including overhead. The VMs were randomly placed in the beginning 
of the experiments.

In the first experiment, DRS was disabled and the VMs could not 
be moved around so that active VMs could take advantage of the 
hosts with many inactive VMs. When the same experiment was 
performed with DRS, the VMs were moved when some hosts had 
many inactive VMs and some hosts were overcommited. The results 
are shown in Table 1. The CPU and memory metrics were as computed 
using Equation 7. The results show the percentage of the total cluster 
resources (in the units of cycles for CPU and memory-seconds for 
memory) that was used to satisfy demand.

In the next set of experiments, we illustrate the impact of DRS 
cost-benefit analysis. The environment consisted of 15 hosts and 
25 VMs. The hosts were configured with three different types — a 
small host with 2 cores, 2 GB memory, a medium host containing  
4 cores and 2 GB of memory and a large host containing 4 cores and 
4 GB of memory. The workloads inside the VMs mimicked a diurnal 
pattern. For 600 seconds the VMs were busy. For experiment 1, 
The values were normally distributed around 1000 MHz with a 
variance of 800 MHz. For the next 600 seconds it was distributed 
around 600 MHz with a variance of 500 MHz. For the other two 
experiments the high value was distributed uniformly between 
500 and 1500 MHz and the low value was distributed between 0 
and 500 MHz. Figure 7 shows a typical workload inside VM from 
experiment 1. DPM was turned on for these set of experiments. The 
three experiments show that cost benefit significantly reduces the 

Since the simulator is deterministic, we can run a test with different 
algorithms and compute the overall resources allocated to the VMs. 
Even though the simulator supports random distributions as input 
for workload generations, the random numbers use a configurable 
seed so that the VMs would have the same load value at the same 
time in the simulation across different runs.

The main metric used to study how effectively resources are being 
allocated is a cumulative payload metric that can be defined as follows:

Here T denotes the total simulation time. This metric is calculated 
separately for both CPU and memory. The CPU payload is the area 
under the curve when the sum of the CPU utilization for all the VMs 
is plotted in time. If all the VMs have equal shares and have no 
reservation or limit, a higher number is better. Furthermore, this 
value is normalized by dividing the area by sum of capacity of all 
the hosts times length of the experiment. The CPU playload thus 
captures the total number of CPU cycles in the cluster (on all the 
hosts) and how many of those cycles were usefully spent.

The memory payload is computed similarly. If VMs have different 
shares, then this metric must be calculated for each share class to 
ensure the DRS algorithm is fair when it improves the overall utilization. 
The simulator also estimates power consumption of the ESX hosts 
based on a simple power model that involves base power and 
additional power for the workload it currently runs.

ExPErIMEnT MIgrATIonS cPU MEMory

Without VMware DRS 0 55.68 65.94

With VMware DRS 166 73.74 94.99

Table 1: Benefits of VMware DRS. VMware DRS improved CPU and memory 
utilization significantly.

5.1.2 Simulator-Based Evaluation

Figure 5: Difference in CPU and Memory payload when VMware DRS is enabled

Figure 6: Difference in the number of migrations when cost-benefit analysis is enabled.
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the cluster. The VMs belonged to 4 different resource pools 
(RP-HighShare, RP-NormShare-1, RP-NormShare-2, RP-LowShare) 
with different resource shares, with 320 VMs in each resource pool. 
Each VM was configured with 1 vCPU and 1 GB memory. Notice that 
we are using only uniprocessor VMs in our evaluation because the 
number of vCPUs in a VM does not affect DRS behavior in a significant 
way. The hardware and software setup of the testbed follows:

• vCenter Server 5.0: Intel Xeon E5420, 2 x 4 cores @ 2.50 GHz, 
16 GB RAM, runs 64-bit Windows 2008 Server SP1.

• vCenter Database: AMD Opteron 2212 HE, 2 x 2 cores @ 2 GHz, 
12 GB RAM, runs 64-bit Windows 2008 Server SP1 and Microsoft 
SQL Server 2005.

• ESX 5.0 hosts: Dell PoweEdge 1950II servers, Intel Xeon E5420, 
2 x 4 cores @ 2.5 GHz, 32 GB RAM.

• Network: 1 Gb vMotion network configured on a private VLAN.

• Storage: 10 LUNs on an EMC Clariion CX3-80 array shared by 
all the hosts.

In this experiment, DRS was enabled with default settings, and 
DPM was disabled, so all 32 hosts remained powered on. We 
started with all 1280 VMs idling in the cluster. These VMs were 
evenly distributed across all 32 hosts, due to DRS load balancing. 
We then injected a CPU load of roughly 20% of a core into each of 
the 640 VMs in the first two resource pools (RP-HighShare and 
RP-NormShare-1). Since these 640 VMs were running on 16 hosts 
of the cluster, the VM load spike led to an overload on these 16 hosts 
and a significant load imbalance in the cluster.

Even though such an extreme scenario may not occur commonly in 
a datacenter, it serves as a stress test for evaluating how DRS handles 
such a significant imbalance in the cluster. We also use this example 
to illustrate the following key metrics for characterizing the effectiveness 
of the DRS algorithm.

• Responsiveness: How quickly can DRS respond to VM load changes?

• Host Utilization: Total resource entitlement from all the VMs 
running on a host, normalized by the host’s available capacity.

• Cluster Imbalance: The standard deviation of the current host 
load across all hosts in the cluster.

• Number of vMotions: How many vMotions are recommended by 
DRS to balance the cluster?

• VM Happiness: Percentage of resource entitlement received by 
each VM.

Next we discuss the experimental results using these five metrics.

Responsiveness: In this experiment, DRS responded in the first 
invocation after the VM load spikes that led to a severe imbalance 
in the cluster. The DRS algorithm took 20 seconds to run, and gave 
recommendations to migrate VMs away from the overloaded 
hosts. This behavior demonstrates the responsiveness of the  
DRS algorithm when faced with significant VM load changes.

number of migrations while keeping CPU and memory utilizations 
of the cluster the same or improving it. Table 2 presents the results 
of these experiments.

ExPErIMEnT MIgrATIonS cPU MEMory

Expt1 41 19.16 15.84

Expt1-CB 25 19.25 15.86

Expt2 78 18.92 15.84

Expt2-CB 27 19.20 15.84

Expt3 39 6.67 42.90

Expt3-CB 16 6.67 43.05

Table 2: Impact of cost-benefit analysis.

The simulator also models the power consumption of each host 
and the whole cluster. We used a cluster with 32 hosts and 200 
VMs. Similar to the cost benefit experiment, the VMs had a day-
night workload where all the VMs were active (between 1200 and 
2200 MHz) during the day and would go partially idle (workload 
normally distributed between 500 to 1000 MHz) during the night. 
DPM would shut down the hosts when the VMs became idle. Table 3 
shows the results with and without DPM. Power is in the units of 
Kilowatt hours. The CPU and memory metrics are as described above.

ExPErIMEnT MIgrATIonS cPU MEMory PoWEr

Without  
VMware DPM

0 2.77 2.31 31.65

With VMware DPM 273 2.78 2.32 11.97

Table 3: DPM achieves signicant power savings without impacting performance.

5.2 Real Testbed: DRS Performance
We now present the results of an experiment that shows the 
effectiveness of the DRS algorithm on a real testbed. The experiment 
was run on a DRS cluster consisting of 32 ESX hosts and 1280 Red 
Hat Enterprise Linux (RHEL) VMs. vSphere 5.0 [4] was used to manage 

Figure 7: Typical VM workload used in the cost-benefit experiments.
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DRS quickly brought the imbalance to below 0.1 within 30 minutes, and 
within 90 minutes the cluster was fairly close to being “balanced.” In 
the remaining 50 minutes, DRS further reduced the imbalance gradually 
and finally brought the cluster imbalance down below its target.

Number of vMotions: Figure 11 reports the number of vMotions 
recommended during each DRS invocation. A total of 267 vMotions 
were executed, and among these, 186 vMotions occurred in the 
first three rounds of DRS invocations (> 40 in each round), due to 
the severe imbalance in the cluster. This caused the cluster imbalance 
to drop quickly. In the remaining 25 rounds of invocations, the imbalance 
became more subtle and DRS behaved relatively conservatively, 
taking into account the migration cost in the cost-benefit analysis.

VM Happiness: Finally, we summarize the overall VM happiness 
during the course of the experiment. Since memory never became 
a bottleneck in this experiment, we focus on CPU and define happiness 
for an individual VM as the percentage of CPU entitlement received 
by this VM. For a resource pool, we characterize its overall happiness 
using two metrics — average happiness and percentage of happy 
VMs. The former is the individual VM happiness averaged across 
all the VMs in the resource pool, and the latter is the percentage of 
VMs in the resource pool receiving at least 95% of entitled CPU.

Host Utilization: Figures 8 and 9 show the normalized total CPU/
memory entitlement of all hosts based on the VMs running on each 
host.1 The larger number is worse in terms of load on the host. A 
value above one indicates that the host is overloaded. As we can 
see, due to the increased VM loads, 16 of the hosts had a spike in 
the normalized CPU utilization and reached an overload state, 
whereas the other 16 hosts remained lightly loaded.

After DRS started moving VMs out of the busy hosts, within 30 minutes 
the CPU utilization of the most-loaded hosts was reduced to around 0.8. 
In the remaining time, DRS continued to balance the CPU load in the 
cluster and reached a steady state in 2 hours and 20 minutes. As a 
result of balancing the host CPU loads, the host memory loads became 
slightly imbalanced, while staying within a range of 0:14-0:32. This 
is acceptable because for most applications, memory does not 
become a bottleneck at such low utilizations.

Cluster Imbalance: Figure 10 plots the cluster imbalance over time. 
The target imbalance value is 0.05 in this case. As a result of the VM 
load increase, the cluster imbalance initially reached a high value of 0.5. 

Figure 9: Per-host normalized memory entitlement. Each line represents a host in the 
32-host cluster.

Figure 10: Cluster imbalance.

Figure 11: Number of vMotion operations per VMware DRS invocation.

1 In most of the figures in this subsection, the x-axis represents the elapsed time T in 
the format of hh:mm, where T=0:00 indicates when the VM load increase occurred.

Figure 8: Per-host normalized CPU entitlement. Each line represents a host in the 
32-host cluster.



5 8
VmwAre distributed resource mAnAgement:

design, implementAtion, And lessons leArned

5.3 Real Testbed: DPM Performance
We present the results of an experiment that evaluates the 
performance of DPM and compares DPM with host power 
management (HPM) [13]. These results demonstrate that DPM  
is able to provide a fairly significant reduction in power consumption 
for clusters with sufficiently long periods of low utilization. In addition, 
combining DPM with host power management provides the most 
power savings as compared with using either policy alone.

The experiment was run on a DRS cluster consisting of 8 ESX 4.1 
hosts and 400 RHEL VMs. vSphere 4.1 [4] was used to manage the 
cluster. Each VM was configured with 1 vCPU and 1 GB memory. The 
hardware setup for the testbed is similar to that of the DRS experiment, 
except that we used a later generation of Dell servers (PowerEdge 
R610) for the ESX hosts, so that we could obtain host power 
measurements from the iDRAC controller [2].

The experiment was run for 90 minutes. In the first 30 minutes, all 
400 VMs were idle. After the 30th minute, each VM had a surge in 
the CPU demand resulting in higher cluster utilization. The increased 
load lasted until the 60th minute, after which all the VMs became idle 
again. The experiment was repeated three times using three power 
management policies: HPM only, DPM only, and DPM+HPM combined.

Figure 14 shows the total power consumption from the eight hosts 
in the cluster as a function of time for the three different policies. 
Next, we describe the result from each policy.

HPM only: In this case, the HPM “Balanced” policy [13] was used. 
Since DPM was disabled, all eight hosts remained powered on. 
When all the VMs were idle (first and last 30 minutes), each host 
had a low (about 25%) CPU utilization. HPM was able to reduce the 
per-host power consumption by leveraging the lower processor 
P-states, resulting in 1500W of total cluster power. When the VMs 
were busy (second 30 minutes), host CPU utilization became high 
enough (> 60%) such that all the processor cores were running at 
the highest P-state (P0) most of the time. As a result, the total 
cluster power was between 2200-2300W.

The values of these two metrics for the 4 resource pools are displayed 
in Figure 12 and Figure 13, respectively. In the first 30 minutes, the 
happiness of the VMs in the first two resource pools (RP-HighShare 
and RP-NormShare-1) suffered, because the VMs in these two 
resource pools experienced a load spike and started contending 
for CPU time on the 16 overloaded hosts. However, it is worth noting 
that under such resource contention, the average happiness of the 
first resource pool (RP-HighShare) is much higher than that of the 
second resource pool (RP-NormShare-1), because the former has  
a higher shares value than the latter (“High” vs. “Normal”).

This result also validates the fairness of the DRS algorithm with 
respect to resource shares. Over time, DRS was able to improve 
the happiness of all the VMs, resulting in an average happiness of 
close to 100% for all the resource pools. Similarly, the percentage 
of happy VMs reached 100% for the first two resource pools 
(RP-HighShare and RP-NormShare-1), and was above 90% for  
the other two resource pools.

Figure 14: Total power consumption of the 8-host cluster.

Figure 12: Average happiness (percentage of CPU entitlement received) for each of 
the 4 resource pools.

Figure 13: Percentage of happy VMs (receiving at least 95% of CPU entitlement) for 
each of the 4 resource pools.
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6. DRS and DPM in the Field
When DRS was introduced in early 2006, vMotion was just beginning 
to gain widespread adoption, but customers were wary of automated 
migration of virtual machines. In the early days, one request from 
customers was support for manual-move recommendations. A human 
administrator would inspect the recommendations and apply the 
moves only if they made sense. Some administrators would run DRS 
in manual mode and if the same move was recommended over a 
substantial number of DRS invocations, then the administrator would 
apply the move. The use of DRS manual mode diminished over time 
as the DRS algorithm became more mature and as administrators 
became more comfortable with automated VM migration; as of 
vSphere 5.0, the use of DRS manual mode is very low.

The first version of DRS did not have cost-benefit analysis turned on, 
as the code was considered experimental. This led to the problem 
that DRS could make recommendations that moved VMs back and 
forth in response to frequently changing demand. In the very next 
release, cost-benefit feature was enabled by default, leading to 
higher-quality moves and fewer migrations.

The DRS algorithm tries to get the biggest bang for its vMotion buck, 
i.e., to minimize the total number of moves needed for load-balancing. 
Moving the largest, most-active VMs can have the highest impact 
on correcting imbalance, and hence DRS would favor such moves. 
While choosing such VMs for vMotion in order to issue fewer moves 
seemed good in theory, some customers did not like this selection 
since their largest, most active VMs were also their most important 
and performance-sensitive VMs, and vMotioning those VMs could 
adversely impact their performance during the migration.

To address this issue, DRS cost-benefit analysis was changed to 
take into account the impact of vMotion on the workload which it 
had not done previously. As vSphere’s vMotion continued to be 
improved, the cost modeling of that impact required updating as 
well. Over time we learned that the modeling aspects of the algorithm 
should be separated from the parts of the algorithm that use the 
model, to ease the maintenance of the algorithm code as the 
technology changes. For example, we moved to having the 
algorithm consider the vMotion time, with the details of the 
parameters relevant to that generation of vMotion technology 
handled in modeling-specific code.

Earlier versions of DRS did not support affinity between VMs and 
hosts and it was thought that affinities between VMs should be 
sufficient. We also wanted administrators to think less about 
individual hosts and more about aggregate clusters. While 
VM-to-VM affinity was sufficient for most technical use-cases,  
there were other requirements such as software licensing that 
made administrators want to isolate VMs onto a set of hosts. 
Administrators started rolling out their own solutions to pinning  
VMs to a set of hosts, such as adding dummy networks to the  
VMs and adding the networks only to a subset of hosts, making  
the other hosts incompatible.

DPM only: In this case, the HPM policy was set to “High Performance”, 
effectively disabling HPM. Since DPM had been enabled, six of the 
eight hosts remained in the powered-off state during the initial 30 
minutes of the idle period. This led to a total cluster power consumption 
of about 566W, a 60% reduction as compared with the 1500W in 
the HPM-only case. Notice the power saving is not exactly 75% here 
because in the DPM case, the two hosts that remained powered on 
had a much higher CPU utilization, resulting in higher per-host power 
consumption. After the VM load increase, DPM first powered on 
four of the standby hosts in the 33rd minute, and then powered on 
two additional hosts in the 38th minute, bringing the cluster back 
to full capacity. The total cluster power consumption increased to 
approximately 2100W after all the hosts were powered on. When 
the VMs became idle again, DPM (by design) kept all the hosts 
powered on for more than 30 minutes, resulting in a total cluster 
power consumption of approximately 1900W.

DPM+HPM combined: This case is similar to the DPM-only case, except 
for the following three observations. First, after the VM load increase, 
DPM initially powered on two of the standby hosts in the 33rd minute, 
and then powered on the four remaining hosts in the 38th minute. 
Second, the total cluster power after all the hosts were powered 
on was roughly 2000W, 100W lower compared to the DPM-only 
case. This was because the newly powered-on hosts had fewer VMs 
running on them, resulting in lower host utilization and providing 
HPM with an opportunity to reduce the power consumption on 
these hosts. Third, in the last 30 minutes when the cluster was idle, 
the DPM+HPM combined policy provided an additional 400W of 
power reduction (1500W vs. 1900W) compared to the DPM-only 
case. Overall, this combined policy provides the maximum power 
savings among the three power management policies we tested.

Figure 15 shows the per-host power consumption as a function of 
time for the DPM+HPM combined case. We can clearly see how each 
host’s power consumption varied as the host power state or the VM 
load level changed. In the last 30 minutes, periodic spikes are visible 
in the host power consumption, due to vMotion-induced higher CPU 
utilization on these hosts. These vMotions were recommended by 
DRS every five minutes to balance the load in the cluster.

Figure 15: Per-host power consumption for the 8 hosts in the cluster.
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run DRS as a decentralized algorithm), and statistical scaling  
(run DRS on a selected subset of the hosts in the cluster), and  
we argued for statistical scaling as being the most robust.

Another future direction is to expand the computing resources that 
DRS manages beyond CPU and memory. In the area of network 
resource management, vSphere currently supports Network I/O 
control [10], which runs on ESX hosts to provide shares and limits 
for traffic types, but there is the additional opportunity for DRS  
to provide cross-host network management, including vMotion  
to respect NIC bandwidth reservations, avoid NIC saturation,  
or locate communicating VMs closer together.

In the area of storage resource management, vSphere recently 
introduced SIOC [28] (vSphere 4.1) to manage data-store I/O 
contention and Storage DRS [16, 29, 31] (vSphere 5.0) to place  
and redistribute virtual machine disks using storage vMotion 
across a cluster of datastores for out-of-space avoidance and  
I/O load balancing, but there is the additional opportunity for  
DRS to support cross-host storage management, including  
storage vMotion perhaps coupled with vMotion to allow VM 
power-on placement to respect I/O bandwidth reservations.

A third future direction is to support proactive operation of DRS 
and DPM. Currently DRS and DPM operate reactively, with the last 
one hour’s worth of behavior used in making its calculations of current 
demand more conservative. The reactive model works well in ensuring 
that the recommendations made by DRS and DPM are worthwhile.

However, when there is a sudden steep increase in demand, a reactive 
operation can result in undesirably-high latency to obtain resources 
(e.g., time to power on a host or to reclaim memory resources from 
other VMs) or difficulty in obtaining the resources needed to respond 
while those resources are being highly contended. When such sudden 
steep increases in demand are predictable (e.g., an 8am spike in VM 
usage), proactive operation can allow preparation for the demand 
spike to occur, to hide the latency of obtaining the resources and  
to avoid competing for resources with the demand spike itself.

7.2 DPM
One future direction for DPM is to revise DPM’s host sorting criteria 
for choosing host power-on/-off candidates. The host sorting currently 
does not use host power efficiency, which is becoming more practical 
as a wider variety of hosts report server power consumption in 
comparable industry-standard ways. Interestingly, this has not 
been a frequent request from DPM users for two reasons: 1) many 
use hosts from the same hardware generation in a cluster, so the 
hosts’ efficiency is similar, and 2) in clusters with mixed server 
generations, the newer servers are both larger and more efficient,  
so the existing sorting based on host size happens to coincide  
with host efficiency.

DPM’s sorting could also consider host temperature; powering off 
hosts with measurably higher ambient temperature reduces the 
usage of hosts that could be more likely to fail.

Another future direction is to revise DPM (and DRS) to understand 
host and cluster power caps such as those in HP Dynamic Power 
Capping [1] and Intel Node Manager [3]. Power caps are a mechanism 

VM-to-Host rules were added to DRS in vSphere 4.1 and have been 
used for licensing and other use cases such as supporting availability 
zones. Similarly, partners asked for DRS to support ESX agent VMs, 
which did not need to be migrated off hosts entering maintenance 
or standby mode and which needed to be ready to serve on an active 
host before non-agent VMs could placed or migrated to that host; 
DRS support for agent VMs was introduced in vSphere 5.0.

Another area where administrators wanted improvement was in 
reporting and tracking the reasons for DRS recommendations. We 
added reason descriptions to the recommendations and descriptive 
faults for situations that prevented recommendations from being 
issued. Users also wanted to know how DRS evaluates the cluster 
as the cluster-wide entitlement of a particular VM is not always 
apparent. Since VM entitlement depends on the demands and 
resource settings of all the VMs and resource pools in the cluster, 
we added graphical displays of metrics to the DRS user interface, 
showing demand and entitlement for VMs and resource pools, as 
well as cluster-wide metrics including overall imbalance and the 
percentage of a VM’s entitled resources being delivered to it.

When DPM was first introduced, the only technology it supported 
to bring hosts out of standby was Wake On Lan (WoL). This made 
some administrators uncomfortable, since WoL packets were required 
to be sent over the vMotion network (on the same subnet) from 
another host in the cluster, hence requiring at least one connected 
powered-on host in the cluster to power the others on. Subsequent 
versions of DPM supported IPMI and iLO, allowing vCenter to 
power-on a host by talking directly with its baseboard controller, 
improving adoption.

Administrators were also uncomfortable when DPM shut down many 
hosts even when they were idle. Based on this concern, multiple 
options were added to DPM to make it more conservative as well  
as take into account the intentions of administrators regarding  
how many hosts can be powered down.

A third area that was improved over several releases was the 
interoperability between DPM and the VMware high availability 
(HA) product. Since DPM reduced the number of powered-on 
hosts HA could choose from for restarting failing-over VMs, HA 
needed to convey to DPM the user’s configured VM failover coverage. 
Spare VMs were introduced to express this information, and they 
prevented consolidation beyond their reservation requirements.

7. Future Directions
In this section, we highlight several of the future directions that  
we are actively exploring for DRS and DPM.

7.1 DRS
One important area for improvement is to expand DRS scaling for 
cloud-scale resource management. In vSphere 5.0, the supported 
maximum DRS cluster size is 32 hosts and 3000 VMs, which satisfies 
enterprise department deployments but falls short of cloud scale. 
In [32], we proposed three techniques for increasing DRS scale: 
hierarchical scaling (build a meta-load-balancer on top of DRS 
clusters), at scaling (build an overlay network on ESX hosts and  
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The problem faced by DRS and DPM is more complicated since 
many of the proposed techniques and lower bounds make several 
assumptions in terms of bin sizes and object dimensions. DRS cannot 
directly use such techniques because there is a cost of migration and 
optimizations need to be solved in an online manner. For online bin 
packing again, one can use algorithms such as Next-Fit, First-Fit [23] 
and Harmonic [41]. These algorithms are shown to have a worst-case 
performance ratio of 2, 1.7 and 1.636 respectively. DRS does not map 
directly to any such algorithm because it tries all possible one-step 
migrations and compares them using cost and benefit analysis. The 
cost-benefit analysis is very dependent on the underlying virtual 
machine migration technology and hypervisor overheads. But one 
can classify DRS as an online, greedy hill-climbing algorithm that 
evaluates all possible one-step moves, chooses the best one, and 
repeats this process after applying that move.

Fair job scheduling and fair queuing [21, 25, 55] techniques are  
also relevant to the DRS solution. Most of these techniques provide 
fairness across a single dimension or resource. In DRS, we use standard 
deviation as a measure of imbalance and combine standard deviation 
across multiple resources based on dynamic weights. These weights 
are again determined based on the actual resource utilization and 
we favor the balancing of the resource with higher utilization.

8.2 VM-based Resource Optimizations
More recently there has been considerable interest in automated 
resource scaling for individual virtual machines. For example, both 
[53] and [44] proposed a two-layered control architecture for adaptive, 
runtime optimization of resource allocations to co-hosted VMs in 
order to meet application-level performance goals. The former 
employs fuzzy logic and the latter adopts a feedback-control 
based approach.

These approaches are complementary to methods that utilize live 
VM migration in other work to alleviate runtime overload conditions 
of virtualized hosts. For example, in [39], the dynamic VM migration 
problem was solved using a heuristic bin packing algorithm, evaluated 
on a VMware-based testbed. In [52], it was discovered that using 
information from OS and application logs in addition to resource 
utilization helps the migration controller make more effective decisions.

Workload migration has also been utilized in other work to consolidate 
workloads onto fewer hosts in order to save power. In [27], a trace-
based workload placement controller and a utilization-based migration 
controller were combined to minimize the number of hosts needed 
while meeting application quality of service requirements. In [45], 
a coordination framework was proposed to integrate five resource 
and power controllers from the processor level up to the data center 
level to minimize overall power consumption while preventing individual 
servers from being overloaded or exceeding power caps.

For private clouds, resource-management solutions like Microsoft 
PRO [14] provide a similar high-level functionality, but the details of 
their approach are not known. Similar approaches such as LBVM 
[5] have been proposed for Xen and OpenVZ-based virtualized 
environments. LBVM consists of a number of scripts that are 
configurable and has a very different architecture. It allows a 

to allow provisioning of power with respect to a specified peak value, 
which can limit the effective MHz capacity of the hosts governed 
by the cap. Given knowledge of the power cap and the power 
efficiency of the hosts, DPM and DRS can decide how to distribute 
VMs on hosts with the goal of meeting the VM’s CPU resource 
needs in accordance with the caps.

Another area for investigation is to allow the user to tune how much 
consolidation is appropriate for DPM. For some users, consolidation 
based on CPU and memory demand is too aggressive, and they would 
prefer that the utilization metric be based on values derived for the 
VM configuration.

8. Related Work
Virtualization has introduced many interesting and challenging 
resource-management problems due to sharing of underlying 
resources and extra layers of indirection (see [26, 40, 48]). Success of 
a highly consolidated environment depends critically on the ability 
to isolate and provide predictable performance to various tenants or 
virtual machines. A recent study [22] performed a cost comparison 
of public vs. private clouds and distilled its results into the mantra don’t 
move to the cloud, but virtualize. Part of the reason is the ability to 
better consolidate VMs in a private virtual datacenter as compared 
to a public cloud, yet a higher consolidation ratio requires better 
management of the shared infrastructure. This has led to a flurry  
of recent research by both industry and academia in building more 
efficient and scalable resource management solutions.

Many of the resource-management tasks have their roots in well-
known, fundamental problems from the extensive literature on bin 
packing and job-scheduling. We classify the related literature in 
this area in two broad categories: bin packing & job-scheduling 
literature and VM-based resource optimizations. The first category 
covers classical techniques that are widely applicable in many 
scenarios and the second covers the algorithms and techniques 
specific to virtual machine based environments.

8.1 Bin Packing and Job Scheduling Algorithms
Bin packing is a well-known combinatorial NP-hard problem.  
Many heuristics and greedy algorithms have been proposed for 
this problem [17, 18, 24, 37, 47]. The simple greedy algorithm of 
placing the item in a bin that can take it or using a new bin if none 
is found, provides an approximation factor of 2. Heuristics such as 
first-fit decreasing (FFD) [54, 33], best-fit decreasing and MFFD 
[36] have led to competitive bounds of (11=9 OPT + 6=9) and 
(71=60 OPT + 1), where OPT is the number of bins given by 
the optimal solution.

The DRS problem is closer to multidimensional bin packing without 
rotation or multidimensional vector bin packing. This problem is even 
harder than the one-dimensional bin packing and many bounds have 
been proved in the literature [19, 20, 35, 38]. These bounds are less 
tight in most cases. Bansal and Sviridenko [20] showed that an 
asymptotic polynomial time approximation scheme does not exist 
for the two-dimensional case. Similar result has been proven for 
two-dimensional vector bin packing by Woeginger [51].
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configurable load balancing rule per VM. It is unclear how well 
LBVM works in terms of overall cluster-level metrics. Neither 
Microsoft PRO nor LBVM support a rich resource model like DRS.

In an IaaS-based cloud many approaches have been proposed for 
elastic scaling and provisioning of VMs based on demand [32, 42, 46]. 
These techniques are complementary to DRS and can run as a service 
on top. Based on actual application monitoring one can either 
power-on more VMs (i.e., horizontal scaling) or change the settings 
of an individual VM (i.e., vertical scaling). DRS can then be used to 
place the new VMs more efficiently or to migrate VMs in order to 
respect new resource control settings.

9. Conclusions
In this paper, we presented the design and implementation of  
DRS (Distributed Resource Scheduler) along with our experience 
of improving it over the last five years. DRS provides automated 
management for a group of virtualized hosts by presenting them 
as a single cluster. DRS provides a very rich resource model in terms 
of controls such as reservations, limits, shares and resource pools 
in order to specify user intent in terms of performance isolation 
and prioritization. Various user operations like initial placement of 
virtual machines, load balancing based on dynamic load, power 
management and meeting business rules are carried out without 
any human intervention. We also presented the design of DPM 
(Distributed Power Management), which provides power savings 
without impacting application workloads.

Our extensive performance evaluation based on an in-house simulator 
and real experiments shows that DRS is able to increase CPU and 
memory consumption of VMs by performing automatic load balancing. 
Similarly, DPM is able to save power without negatively impacting 
running workloads. DRS has been shipping as a feature for the last 
six years and has been extensively deployed by our user base. Our 
own experiments and user feedback have led to several enhancements 
over the initial design. We highlighted some of these optimizations 
and demonstrated their benefit in improving the overall accuracy 
and effectiveness of DRS.
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